DRANGING MEDICINE

Understanding VV ECMO Selection: Lessons learned from the BBQ Holt Murray, MD Department of Critical Care Medicine

So where to start with the literature...

- Impact factor
- NEJM- 73
- JAMA-45
- Intensive Care Medicine- 10.2
- Organogensis- 1.0

Organogenesis it is

Bill James, baseball statistician and author, tells the story of hungry cavemen sitting about a campfire, waiting for tomatoes to ripen. One has the inspiration to throw an ox on the fire, and the first barbecue ensued and was endured. After eating, the conversation goes something like this: "There were some good parts." "Yeah, but there were some bad parts." And the smart one says, "This time, let's not eat the bones."1

Custer JR. Organogenesis. 2011;7:1:13-22.

what bones to avoid.

Lets see how this barbecue has evolved and

Harm from treatment Benefit from treatment

We must define the population least likely to accrue harm and most likely to gain benefit.

Two aspects of any therapy

Dr. John Heysham Gibbon (1903-1973)

William S. Stoney Circulation. 2009;119:2844-2853

Gibbon-IBM Heart-Lung Machine- May 6, 1953

William S. Stoney Circulation. 2009;119:2844-2853

In his words... 1968

• "In general the difficulties encountered were foaming, hemolysis from trauma, and the production of vasoconstrictor substances in the blood from mechanical agitation... Has the heart-lung machine reached the limits of its perfection? The answer, of course, is no. Something happens to the blood during its passage through the present heart-lung machines which is detrimental to the patient..."

Almost 50 Years of ECMO • First successful case in 1972

PROLONGED EXTRACORPOREAL OXYGENATION FOR ACUTE POST-TRAUMATIC RESPIRATORY FAILURE (SHOCK-LUNG SYNDROME)

Use of the Bramson Membrane Lung

J. DONALD HILL, M.D., THOMAS G. O'BRIEN, M.D., JAMES J. MURRAY, M.D., LEON DONTIGNY, M.D., M. L. BRAMSON, A.C.G.I., J. J. OSBORN, M.D., AND F. GERBODE, M.D.

Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Failure

A Randomized Prospective Study

Warren M. Zapol, MD; Michael T. Snider, MD, PhD; J. Donald Hill, MD; Robert J. Fallat, MD; Robert H. Bartlett, MD; L. Henry Edmunds, MD; Alan H. Morris, MD; E. Converse Peirce II, MD; Arthur N. Thomas, MD; Herbert J. Proctor, MD; Philip A. Drinker, PhD; Philip C. Pratt, MD; Anna Bagniewski, MA; Rupert G. Miller, Jr, PhD

	Dea
	I
Therapy*	N
ECMO and MV	
MV (control)	

ventilation.

Fig 2.—Number of surviving patients treated by either mechanical ventilation alone (control group) or supplemented with partial venoarterial bypass plotted against days after entry into study. From day 2 to day 11, there were greater number of surviving patients in bypass group: ECMO, extracorporeal membrane oxygenation.

1979 NHLB ECMO RCT

Patient Outcome			
ad—Respiratory Improvement ever Occurred	Dead After Respiratory Improvement	Survived After Respiratory Improvement	
34	4	4	
41	3	4	

*ECMO indicates extracorporeal membrane oxygenation; MV, mechanical

NHLB Study Assessment and Limitations

- VA Support only
- Harmful MV
- Excessive anticoagulation
- Prolonged MV prior to

UPMC LIFE CHANGING MEDICINE

We've come a long way...

J

Cardiohelp System

But we are getting better at ARDS treatment

50	
40	-
30	3
20	j-
10	-

Mortality (%)

Maca J Respir Care 2017;62(1):113-122.

Or at least causing less harm

ARDS Net N Engl J Med. 2000;342(18):1301-8.

Herein lies the challenge

- We must select a population more likely to survive with ECMO than with standard care.
- This benefit must exceed the physiologic cost and challenge of providing ECMO support.
- Low risk ECMO, High risk ARDS or a combination of both.

And then there was H1N1

ELSO International Report.

Survival (%)

Rozencwajg S. Crit Care 2016;20;392.

ECMO Survival Models

Model	Ν	AUROC(internal)	Year
ECMOnet	60	0.86	2009 H
PRESERVE	140	0.89	2008-20
PRESET score	108	0.85	2009-20
Roch score	85	0.80	2009-20
Enger et al.	284	0.75	2008-20
RESP Score	2355	0.74	2000-20

ECMOnet Score

60 Italian patients • H1N1 in 2009 www.ecmonet.org In Italian

ECMOnet results

Parameter	Partial score
PreECMO hospital length of stay (days)	
≤ 3	0.5
4–7	1
8-11	1.5
>11	2
Bilirubin (mg/dl)	
≤0.15	0
0.16-0.65	0.5
0.66–1.15	1
1.16–1.65	1.5
1.66–2.15	2
>2.15	2.5
Creatinine (mg/dl)	
≤0.5	0
0.51–0.80	0.5
0.81–1.10	1
1.11-1.40	1.5
1.41–1.70	2
1.71-2.00	2.5
2.01-2.30	3
>2.30	3.5
Hematocrit (%)	
>40	0.5
36–40	1
31–35	1.5
≤ 30	2.0
Mean arterial pressure (mmHg)	
>90	0
61–90	0.5
≤ 60	1

 Table 2
 The ECMOnet score

Pappalardo F et al. Intensive Care Med 2013;39:275-281.

PRESERVE Score

- 140 French patients
- Median PaO₂/FiO₂ prior to cannulation 53
- 95% VV ECMO

- $\frac{2}{3}$ of patients prone ventilation prior to ECMO Median time from intubation to ECMO 5 days (1-11) PRedicting dEath for SEvere ARDS on VV-ECMO

PRESERVE results

Table 4 The PRESERVE score calculated with parameters available at the time of decision to initiate ECMO

Parameter

Age (years) <45 45-55 >55Body mass index >30Immunocompromised SOFA $>12^{a}$ MV >6 days No prone positioning before ECMO PEEP < 10 cm H₂O Plateau pressure >30 cm H₂O Total score^c

PRESET Score

 108 German patients -MAPLactate **–** pH Platelet count Hospital days pre-ECMO

• Focused on extrapulmonary risk factors

PRESET Score

Variable	Points	
Mean arterial pressure (mmHg)		
> 100	0	
91–100	1	
81–90	2	
71–80	3	
≤ 70	4	
Lactate concentration (mmol I^{-1})		
≤ 1.50	0	
1.51–3.00	1	
3.01–6.00	2	
6.01–10.00	3	
> 10.00	4	
рН _а		
> 7.300	0	
7.201–7.300	1	
7.101–7.200	2	
≤ 7.100	3	
Platelet concentration (×1000 μ l ⁻¹)		
> 200	0	
101–200	1	
≤ 100	2	
Hospital days pre ECMO		
≤2	0	
3–7	1	
> 7	2	
Total score	0–15	
ICU mortality by risk class	Mortality (%)	
PRESET-Score 0–5, risk class I	26	
PRESET-Score 6–9, risk class II	68	
PRESET-Score 10–15, risk class III	93	

Table 4 PRESET-Score at ECMO initiation

ECMO extracorporeal membrane oxygenation, *ICU* intensive care unit, *PRESET-Score* PREdiction of Survival on ECMO Therapy-Score

85 French patients Cannulation at OSH then transfer to ECMO center

Roch Score

Table 3 Hospital mortality score calculated with parametersavailable just before ECMO initiation

Parameter	Par
SOFA	
<9	0
9–11	1
≥12	2
Age	
<45 years	0
\geq 45 years	1
Influenza pneumonia	
Yes	0
No	1
Total score	0–4

A higher score was associated with higher hospital mortality SOFA sequential organ failure assessment

Roch Score

40

Score 3-4

Score 0-2

Enger et al.

- 284 German patients
- Later coined UKR Pre-ECMO Score
 Evaluation Pre-EMCO and Day 1 post
- Evaluation Pre-El cannulation

Enger Model- UKR Pre-ECMO Score

Model 1 (pre-ECMO)

Age (per five years) Immunocompromised state Minute ventilation (L/minute) Pre-ECMO hemoglobin (g/dL) Pre-ECMO lactate (mmol/L) Intercept

Model 2 (Day 1)

Age (per five years)

Immunocompromised state

Minute ventilation (L/minute)

Pre-ECMO hemoglobin (g/dL)

Day 1 FiO_2 (per 10%)

Day 1 fibrinogen (mg/dL)

Day 1 norepinephrine (μ g/minute/10 kg)

Day 1 C-reactive protein (mg/L)

Figure 1 Comparison of the receiver-operating curves for all risk prediction tools (n = 241). Neither the ECMOnet nor the PRESERVE score had significantly better discrimination compared to the SOFA score (P = 0.67 and 0.25, respectively). Model 1 improved discrimination compared to the SOFA and the ECMOnet score (P = 0.03and 0.009, respectively). Addition of parameters available one day after ECMO initiation further enhanced discrimination compared to both Model 1 and the PRESERVE score (P = 0.03 and P = 0.003, respectively). Further statistical comparison is given in Table 2. ECMO, extracorporeal membrane oxygenation; SOFA, Sequential Organ Failure Assessment.

Model 2 (Day 1) Model 1 (Pre-ECMO) PRESERVE 1.0

- database
- Negative scores indicate mortality

RESP Score

2355 patients from international ELSO

Citation.

RESP Score

Parameter

Age, yr 18 to 49 50 to 59 ≥60 Immunocompromised status* Mechanical ventilation prior to initiation of ECMO <48 h 48 h to 7 d >7 d Acute respiratory diagnosis group (select only one) Viral pneumonia Bacterial pneumonia Asthma Trauma and burn Aspiration pneumonitis Other acute respiratory diagnoses Nonrespiratory and chronic respiratory diagnoses Central nervous system dysfunction[†] Acute associated (nonpulmonary) infection[‡] Neuromuscular blockade agents before ECMO Nitric oxide use before ECMO Bicarbonate infusion before ECMO Cardiac arrest before ECMO Pa_{CO2}, mm Hg <75 ≥75 Peak inspiratory pressure, cm H₂O <42 ≥42 Total score

Schmidt et al Am J Respir Crit Care Med189(11);1374–1382.

Survival

92%	
76%	
57%	
33%	
18%	

Schmidt et al Am J Respir Crit Care Med189(11);1374–1382.

RESP Score

Figure 2. Individual observed survival regarding the Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score within 95% confidence interval. Each dot represents the observed survival percentage in the study population (n = 2,355) used to derive the RESP score. Curved dotted gray lines and curved black lines represent 95 and 99% confidence intervals, respectively, for predicted survival at each score level.

respscore.com

The **RESP** Score

The RESP Score has been developed by <u>ELSO</u> and <u>The</u> <u>Alfred Hospital, Melbourne</u>. It is designed to assist p undergoing Extra-Corporeal Membrane Oxygenation for considered for patients who are not on ECMO or as substitu

For more information see:

Schmidt M, Bailey M, Sheldrake J, et al. Predicting Sc Respiratory Failure: the Respiratory ECMO Survival Pr Crit Care Med. 2014.

	The patient's RESP S	Score is
Department of Intensive Care at The prediction of survival for adult patients r respiratory failure. It should not be tute for clinical assessment.	4	
urvival after ECMO for Severe Acute rediction (RESP)-Score. Am J Respir	Age (years:)	
	e e e e e e e e e e e e e e e e e e e	18-49 ○ 50-59○ ≥60○
	Immunocompromised	ONO
	Mechanical ventilation prior to initiation of EC <48 48 hours - 7 >7	MO hours days days
	Acute Respiratory diagnosis group Viral pneum Bacterial pneum As Trauma Aspiration pneum Other acute respiratory diag Non-respiratory and chronic respiratory diag	nonia nonia sthma /burn onitis nosis noses
	Central nervous system dysfunction	NO
	Acute associated (non-pulmonary) infection	NO
	Neuro-muscular blockade before ECMO	NO
	Nitric oxide use before ECMO	NO
0 1 2 3 4 5 6 7 ≥8	Bicarbonate infusion before ECMO	NO
Score	Cardiac arrest before ECMO	NO
	PaCO ₂ ≥75 mmHg / 10kpa	NO
	Peak inspiratory pressure ≥42cmH ₂ O	NO
incouried		

Effect of BMI

Variable	$\begin{array}{l} \text{BMI} < \!\!\!40 \ \text{kg/m}^2 \\ (n = 43) \end{array}$	$\begin{array}{l} \text{BMI} \geq \!$	p Value	$\begin{array}{l} \text{BMI} \geq \!$	p Value ^a
Intensive care unit LOS (d)	15.5 (IQR: 6–37.5)	28 (IQR: 13.5–46.5)	0.35	33 (IQR: 25–45)	0.13
Hospital LOS (d)	28 (IQR: 7–55)	35 (IQR: 13.5–50)	0.77	42 (IQR: 31–45)	0.22
Weaned from ECMO	27 (63%)	9 (75%)	0.51	6 (100%)	0.16
Bridge to recovery	26 (60%)	9 (75%)	0.50	6 (100%)	0.08
Bridge to transplantation	1 (2%)	0 (0%)	1	0 (0%)	1
Complications					
Major bleeding/thrombosis	13 (30%)	5 (42%)	0.50	3 (50%)	0.38
HITT	2 (5%)	3 (25%)	0.06	1 (17%)	0.33
CVA	3 (7%)	1 (8%)	1	0 (0%)	1
Hospital or 30-d mortality	18 (42%)	4 (33%)	0.74	0 (0%)	0.07

^a Compared with BMI < 40 kg/m².

Understanding the balance

Fig. 2 Pre-ECMO factors associated with mortality on W-ECMO according to published predictive survival models. Red pyramid, risk factors; green pyramid, protective factors: the higher the factor, the heavier impact on mortality according to published predictive survival models. ARDS acute respiratory distress syndrome, MV mechanical ventilation, Pplat, plateau pressure PEEP positive end-expiratory pressure

Rozencwajg S. Crit Care 2016;20;392.

What predicts ARDS mortality? Stratification and Outcome of ARDS (STANDARDS)

- Network
- Simplified score
 - Age
 - PaO_2/FiO_2
 - APPS (Airway plateau pressure score)
- AUC 0.80 for score >7
- Outperforms APACHE II score (AUC 0.66)

Vilar J. Crit Care Med. 2016;44:1361-9.

STANDARDS Network Score

TABLE 3. A 9-Point Acute Respiratory **Distress Syndrome Outcome Score (Age,** Pao,/Fio,, and Plateau Pressure Score)

Variables	Range of Values
Age, yr	< 47
	47-66
	>66
Pao_2/Fio_2 , mm Hg	>158
	105-158
	< 105
Plateau pressure, cm H ₂ O	<27
	27-30
	>30
Total score	

Total score is equal to the sum of the points for each category of high-risk tertiles, based on the values at 24 hr after acute respiratory distress syndrome diagnosis.

Vilar J. Crit Care Med. 2016;44:1361-9.

Murray Score

- Quadrants of consolidation (0-4)
- $PaO_{2}/F_{i}O_{2}$ ratio (0-4)
- **PEEP (0-4)**
- Pulmonary compliance (0-4) $- V_{T}/(PIP-PEEP)$
- ELSO transfer recommendation
 - 2.5 consider ECMO referral
 - 3.0 ECMO referral

Murray J. Am Rev Respir Dis. 1988;138(3):720-3.

Hail CESAR? 2009

"La morte di Cesare" Vincenzo Camuccini (1804)

CESAR Key points

Inclusion • Murray score >2.5 - 18-65 y/o <7 days

- Severe but potentially reversible respiratory failure:
 - Uncompensated hypercapnea with pH<7.20

Duration of high pressure and/or high FiO₂ ventilation

CESAR Key points

- Referral to ECMO Center v. Conventional Management
- Unfortunately other differences in care
 - Increased steroid use (84% v. 64%)
 - Increased use of MARS (17% v 0%)
 - Less HFOV (7% v. 14%)

Low volume Low pressure ventilation (93% v. 70%)

CESAR Result

Figure 2: Kaplan-Meier survival estimates ECMO=extracorporeal membrane oxygenation. *Patients were randomly allocated to consideration for treatment by ECMO, but did not necessarily receive this treatment.

Peek et al. Lancet 2009;374:1351-63.

Effect of Center Volume

Barbora RP. J Am J Respir Crit Care Med 2015;191(8):894-901.

Diseases that do well

- Pneumonia
 - Influenza/viral
- Aspiration
- Pulmonary contusion
- Steroid responsive lung disease

Primary graft dysfunction following lung transplant

And those that don't

- Profound septic shock
- Acute/subacute pulmonary fibrosis
- Irreversible lung injury (i.e. Bleomycin lung injury)
- Cryptogenic Organizing Pneumonia
- Debility/Immobility/Frailty
- MSOF

Time for new data

EOLIA: ECMO to rescue Lung Injury in severe ARDS

- RCT ECMO v. Conventional Care
- Conventional care – VT 6mL/kg – Plateau pressure 28-30cm H₂O Allows iNO and prone ventilation

EOLIA: ECMO to rescue Lung Injury in severe ARDS

 Inclusion – ARDS - MV < 6 days

 One of the three criteria following optimization • $PaO_2/FiO_2 < 50 \text{ mmHg with } FiO_2 > 80\% \text{ for } >3h$ • $PaO_2/FiO_2 < 80 \text{ mmHg with } FiO_2 > 80\% \text{ for } > 6h$ • pH <7.25 and PaCO₂ >60mmHg for >6h with plat <32

CHANGING

EOLIA: <u>ECMO</u> to rescue <u>Lung</u> <u>Injury</u> in severe <u>ARDS</u>

• Exclusion - MV >7days - BMI >45 Chronic respiratory insufficiency - HIT — Moribund (SAPS II >90)

Oncologic disease not expected to survive 5yrs

EOLIA Results

EOLIA: <u>ECMO</u> to rescue <u>Lung</u> <u>Injury</u> in severe <u>ARDS</u>

 Controversy with early termination enrolment 28% Control arm cross over

Unable to meet significance with predetermined

UPMC Respiratory Failure ECMO Selection and Exclusion

Pre-ECMO optimization

- ARDSnet settings
- Recruitment trial
- Optimal peep trial
- Paralysis
- Diuretic trial if tolerated
- Transfusion to Hgb 12
- Fever control to T<38.5
- Prone positioning trial

UPMCVV ECMO Selection Criteria

- Reversible disease process
- Failed pre-ECMO optimization
- Failure to maintain PaO₂ > 55mmHg or Sat >88% on 100% FiO₂
- Unable to maintain pH >7.2 due to hypercarbia with elevated plateau pressures

UPMCVV ECMO Exclusion Criteria

Absolute

- home O₂ requirement (except OSA)
- Age > 65
- Known anoxic brain injury
- Active GI bleeding
- Pan-resistant pneumonia
- Cirrhosis MELD >20
- Malignancy without surgical cure
- Moribund patients —

- Baseline advanced lung disease not actively on transplant list. This includes any

Advanced HIV/AIDS (well controlled HIV is not an exclusion)

UPMCVV ECMO Exclusion Criteria

Relative

 >10 days of mechanical ventilation
 > 7 days of high pressure or high FiO₂
 Mild stroke or ICH may be considered

UPMCVV ECMO results Overall survival to discharge 2013 to 2017

- 181 cases 62% 2015-2017 subset data - Bridge to lung transplant 55% – Respiratory failure trauma 56% Respiratory failure 59% Post lung transplant 83%

- Optimize aggressively
- Prone early
- Adhere to ARDSnet
- are curative but rather support devices
- MEDCALL 412-647-7000

VV ECMO tips

• Remember that neither ECMO nor mechanical ventilation • Call ECMO team early when you need help and advice.

Thanks

